Phil 150: Section 2 Handout

John Wilcox... of New Zealand¹

Admin:

- Email: <u>wilcoxje@stanford.edu</u>
- Anonymous feedback form: https://forms.gle/hAy1Tu6yAX9t2K6z5

Some definitions you need to know:

- Negation:
 - Informal reading: "A is not the case"

Α	$(\neg A)$
Т	F
\overline{F}	Т

- Conjunction:
 - Informal reading: "A is true and B is true"

В	Α	$(A \land B)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

- Disjunction:
 - Informal reading: "Either A is true, B is true, or both are true"

В	Α	$(A \lor B)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

- Material implication:

- o Informal reading: Kind of like "If A is true, then B is true"
- Note! Material conditional departs from out intuitive notions of "If..., then ..." statements in many ways

	2 2	
В	Α	$(A \rightarrow B)$
Т	Т	Т
Т	F	Т
F	Т	F
F	F	Т

¹ Footnote: New Zealand is still not Australia.

- Valuation:
 - Let *Prop* be the set of all propositional atoms $A_1, A_2, ..., A_n$
 - A valuation $v \triangleq$ a function $v: Prop \to \{T, F\}$ assigning T or F to every propositional atom in *Prop*
- Validity:
 - A formula φ is logically valid \triangleq for every valuation $v, v \models \varphi$ —that is, the valuation makes the formula true
- Contradiction:
 - A formula φ is logically valid \triangleq for every valuation $v, v \neq \varphi$ —that is, the valuation assigns *F* to φ
- Satisfiability:
 - A formula φ is satisfiable \triangleq there is at least one valuation such that $v \vDash \varphi$
 - A set of formulas Γ is satisfiable \triangleq there is at least one valuation such that $v \vDash \varphi$ for every $\varphi \in \Gamma$
- Entailment:
 - Where Γ is a set of formulas, Γ logically entails φ (written Γ ⊨ φ) \triangleq for every valuation such that $v \models γ$ for every formula $γ \in Γ$, it is also the case that $v \models φ$
- Equivalence:
 - Formulas γ and ϕ are equivalent $\triangleq \gamma \Vdash \phi$ and $\phi \Vdash \gamma$ (i.e. they always have the same truth-values)
- Truth-functional completeness:
 - A set of connectives C is truth-functionally complete \triangleq every other *n*-ary connective (for any *n*) can be defined out of connectives in *C*.

Practice exercises:

- 1. Is this formula valid?
 - a. $((A \lor B) \lor \neg A)$
 - b. $(A \land \neg A)$
- 2. Are any of the above two formulas satisfiable?
- 3. Does the following entailment hold?

a. $\{(\neg A \lor B), \neg B\} \Vdash (\neg A)$

4. Does the following equivalence hold?

a.
$$(\neg (\neg A \land B)) \dashv \Vdash (A \lor \neg B)$$

- 5. Is this valid? Show why or why not.
 - a. $((A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A))$
- 6. Does the following hold?
 - a. $\{(A \rightarrow B), \neg B\} \Vdash (\neg A)$
- 7. Suppose this corollary is true:
 - a. Corollary 642: $\{V, \neg\}$ is truth-functionally complete.
 - b. Now show that $\{\Lambda, \neg\}$ is also truth functionally complete

² Sorry folks. Can't figure out how to do this thing \Vdash backwards, so excuse the mismatch between my notation and the course reader's $\sqrt{(\nu)}/$

Practice exercise solutions:

- 1. Is this formula valid?
 - a. $((A \lor B) \lor \neg A)$

i. Yes. Every valuation makes it true.

Α	В	((A	V	B)	V	٦	<i>A</i>)
Т	Т	Т	Т	Т	Т	F	Т
Т	F	Т	Т	F	Т	F	Т
F	Т	F	Т	Т	Т	Т	F
F	F	F	F	F	Т	Т	F

b. $(A \land \neg A)$

- i. No, at least one valuation does not make it true. (You can give the truth table, as above.)
- 2. Are any of the above two formulas satisfiable?
 - a. Yes. $((A \lor B) \lor \neg A)$ is satisfiable because there is at least one valuation where it's true.
- 3. Does the following entailment hold?
 - a. $\{(\neg A \lor B), \neg B\} \Vdash (\neg A)$
 - i. Yes. Every valuation where the premises are true is one where the conclusion is true.

Α	В	(¬	Α	V	B)	(¬	<i>B</i>)	(¬	<i>A</i>)
Т	Т	F	Т	Т	Т	F	Т	F	Т
Т	F	F	Т	F	F	Т	F		Т
F	Т	Т	F	Т	Т	F	Т	Т	F
F	F	Т	F	Т	F	Т	F	Т	F

- 4. Does the following equivalence hold?
 - a. $(\neg(\neg A \land B)) \dashv \Vdash (A \lor \neg B)$
 - i. Yes. (You can give the truth table, as above.)
- 5. Is this valid? Show why or why not.
 - a. $((A \to B) \to (\neg B \to \neg A))$
 - i. It's valid. (You can give the truth table, as above, to show this.)
- 6. Does the following hold?
 - a. $\{(A \rightarrow B), \neg B\} \Vdash (\neg A)$
 - i. Yes. (You can give the truth table, as above.)
- 7. Suppose this corollary is true:
 - a. Corollary 642: $\{V, \neg\}$ is truth-functionally complete.
 - b. Now show that $\{\Lambda, \neg\}$ is also truth functionally complete
 - i. By definition, a set of connectives C is truth functionally complete if every other n-ary connective (for any n) can be defined out of connectives in C.
 - ii. If the connectives of C can be defined out of connectives in some other set C^* , then C^* must also be truth-functionally complete.
 - iii. Consequently, $\{\Lambda, \neg\}$ is truth functionally complete if we can define the connectives $\{V, \neg\}$ out of $\{\Lambda, \neg\}$.
 - iv. Consequently, we now turn to show that this can be done.
 - v. Trivially, negation (i.e. \neg) in one set is defined the same as negation in the other set.

- vi. So the real task is to show that disjunction (i.e. V) can be defined out of $\{\Lambda, \neg\}$.
- vii. We show this below with a truth table:

Α	В	(A	V	<i>B</i>)	Г	(¬	Α	Λ	٦	<i>B</i>)
Т	Т	Т	Т	Т	Т	F	Т	F	F	Т
Т	F	Т	Т	F	Т	F	Т	F	Т	F
F	Т	F	Т	Т	Т	Т	F	F	F	Т
F	F	F	F	F	F	Т	F	Т	Т	F

- viii. We see that they have exactly the same truth-tables, meaning that disjunction can be defined out of negation and conjunction.
- ix. Thenceforth, $\{\Lambda, \neg\}$ is also truth-functionally complete